A Framework for Context-Aware Adaptable
Web Services

Markus Keidl and Alfons Kemper

Universitat Passau, D-94030 Passau, Germany
<lastname>Q@db.fmi.uni-passau.de

1 Introduction

The trend towards pervasive computing involves an increasing number of ubig-
uitous, connected devices. As a consequence, the heterogeneity of client capa-
bilities and the number of methods for accessing information services on the
Internet also increases. Nevertheless, consumers expect information services to
be accessible from all of these devices in a similar fashion. They also expect that
information services are aware of their current environment. Generally, this kind
of information is called context. More precisely, in our work context constitutes
information about consumers and their environment that may be used by Web
services to provide consumers a customized and personalized behaviour.

In this paper, we present a context framework that facilitates the develop-
ment and deployment of context-aware adaptable Web services. We implemented
the framework within our ServiceGlobe system [1,2], an open and distributed
Web service platform.

2 The Context Framework

In our framework, context information is transmitted (in XML data format) as
a SOAP header block within the SOAP messages that Web services receive and
send. A context header block contains several context blocks. Each context block
is associated with one dedicated context type, which defines the type of context
information a context block is allowed to contain. At most one context block for
a specific context type is allowed.

The life-cycle of a Web service’s context begins at the client: First, the client
application gathers all relevant context information and inserts it into the SOAP
header. Then, the request is sent to the Web service. After the request was re-
ceived, the context is extracted by the context framework and provided to the
invoked Web service as its current context. During its execution, the Web ser-
vice can access and modify this current context using the API provided by the
framework. When the Web service invokes another service during its execution,
its current context is automatically inserted into the outgoing request. The re-
sponse to such a request may also contain context information. In this case,
the Web service can extract the interesting parts of the context data from the
response and insert them into its current context. After the Web service’s ter-
mination, its current context is automatically inserted into its response and sent
back to the invoker. If the invoker is a client application, it can integrate portions
of the returned context into the consumer’s persistent local context (for use in
future requests).

[— Context @) -
[I— | Header Block [« S
Context Pre-Processing i g Context Plugins I|
S
SOAP Request =
o -
g Web Servce Manager :
Y gl g
S o
g AL
a o I~ s s
7 | SOAPPayload | | Ll \\eh service Invocation =
g Processing Manager 3
=l < LA F)
g oli1|5
% s810
[} ;=
7]
= : (i)
Context s
ontex Context £5
<} Header Block > 5
Post-Processing (4) o
SOAP Response
Service Platform

Fig. 1. Components for Context Processing

2.1 Processing Context

There are four components that process context information (see Figure 1): Web
services, context plugins, context services, and clients (not shown). Invoked Web
services themselves can always process any context information. They have full
control over how the context information influences their execution and their
replies, and they can also modify the context. Context plugins are implemented
in Java and must be installed locally at a host. Every plugin is associated with
one dedicated context type. Context services are Web services that implement
the ContextService interface, which is defined using the WSDL standard. Just
as context plugins, every context service is associated with one context type. In
contrast to context plugins, context services need not be installed locally, but
can be available anywhere on the Internet. The client application also processes
context information, e.g., it converts price information in a response into the
currency at the consumer’s current location.

There are four occasions at which context is processed automatically, as
shown in Figure 1: First, the incoming SOAP request of an invoked Web service is
pre-processed (1), based on the context in the request. Furthermore, whenever
the Web service invokes other services, outgoing requests are post-processed
before they are actually sent (2). All incoming responses to outgoing requests
are pre-processed before they are returned to the Web service (3). Finally, the
outgoing response of the invoked Web service is post-processed (4), based on the
service’s current context.

2.2 Processing Instructions

In our framework, a context block could potentially be processed by several
components. Furthermore, it can be processed by all hosts on which the invoked
Web service invokes other services. Context processing instructions are used to
specify rules of precedence and the components and hosts that should actually
be used for context processing. They encompass context service instructions and
processing guidelines. With context service instructions, context services that
should be used for context processing and their execution order are specified.
With processing guidelines, the components that should be used to process a

certain context block are specified as well as the hosts at which the context
block should be processed.

Context processing instructions can be inserted into the context itself as a
self-contained context block. Furthermore, a Web service’s UDDI metadata may
be annotated with them. Providers or developers of Web services can use this op-
tion to specify context services that should be used for processing certain context
blocks. Additionally, context services may be published in a UDDI registry, just
as ordinary Web services. Our framework then uses the available UDDI metadata
to automatically determine available context services for context processing.

2.3 Context Types

Our context framework provides several integrated context types. One of the
most important context types for information services is Location. It contains
information about the consumer’s current location, e.g., the consumer’s GPS
coordinates, country, local time and time zone. It may also include semantic lo-
cation information, e.g., that the consumer is currently at work. The Consumer
context type contains information about the consumer invoking the information
service, e.g., name, email address, preferences, and so on. Client context infor-
mation is data about a consumer’s client, e.g., its hardware (processor type or
display resolution) as well as software (Web browser type and version).

3 Description of the Demo

For our demonstration, we use a well-known information service from the In-
ternet as basis, the Amazon Web service. We developed the information service
MyBook that enhances the Amazon service’s query capabilities with context
awareness. The MyBook service uses, for example, Client context information to
adjust its response to the client’s capabilities. If the display of the client device is
small (e.g., on PDAs or cell phones), unnecessary data, e.g., customer reviews, is
removed from the response. We also present a context service that uses Location
context information to convert price information in the service’s response into
the currency at the consumer’s current location.

We implemented several clients for different devices, e.g., Java-based clients
for PDAs and cell phones. With them, the usefulness and the advantages of
context information are demonstrated, based on the MyBook service. We also
implemented a Web-based client that allows the investigation of the influence of
various types of context information on information services in more detail.

References

1. M. Keidl, S. Seltzsam, and A. Kemper. Reliable Web Service Execution and De-
ployment in Dynamic Environments. In Proc. of the Intl. Workshop on Technologies
for E-Services (TES), volume 2819 of Lecture Notes in Computer Science (LNCS),
pages 104-118, 2003.

2. M. Keidl, S. Seltzsam, K. Stocker, and A. Kemper. ServiceGlobe: Distributing E-
Services across the Internet (Demonstration). In Proc. of the Conf. on Very Large
Data Bases (VLDB), pages 1047-1050, 2002.

