ServiceGlobe: Distributing E-Services
Across the Internet

Markus Keidl Stefan Seltzsam

Konrad Stocker Alfons Kemper

Universitat Passau
Fakultat fiir Mathematik und Informatik
94030 Passau, Germany
(last name)@db.fmi.uni-passau.de

1 Introduction

The next generation of Internet applications is emerg-
ing: e-services. By an e-service, we understand an au-
tonomous software component that is uniquely identi-
fied by an URI and that can be accessed by using stan-
dard Internet protocols like XML, SOAP, or HTTP.
An e-service may combine several applications that a
user needs, such as the different pieces of a supply-
chain architecture. For the end-user, however, the en-
tire infrastructure will appear as a single application.

The ServiceGlobe system provides a platform on
which e-services (also called services or Web services)
can be implemented, stored, published, discovered, de-
ployed, and dynamically invoked at arbitrary Inter-
net servers participating in the ServiceGlobe feder-
ation. While current approaches mainly try to in-
tegrate existing services which are already running
on dedicated servers, we provide the functionality
to specify new, composite services which can be de-
ployed dynamically on arbitrary ServiceGlobe enabled
servers/devices. Besides the support of standard func-
tionality of a service platform like SOAP /XML com-
munication, a transaction system, or a security system,
the ServiceGlobe platform addresses also various opti-
mization issues like load balancing or network oriented
deployment during service execution.

Due to its potential of changing the Internet to
a platform of application collaboration and integra-
tion, e-service technology gains more and more atten-
tion in research and industry; initiatives like HP Web
Services Platform [WSP], Sun ONE [Sun], or Mi-
crosoft NET [NET)] show this development. Although

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 28th VLDB Conference,
Hong Kong, China, 2002

all of these frameworks share the opinion that services
are important for easy application collaboration and
integration, they handle the subject from a different
point of view. Their approaches are server-centric and
their focus is on providing a complete infrastructure to
implement these services. Our approach is network-
centric, focusing on the distributed execution of ser-
vices and an elaborate selection and distribution of
the services they deploy.

2 Architecture of ServiceGlobe

The ServiceGlobe system provides a lightweight infra-
structure for a distributed, extensible e-service plat-
form. It is completely implemented in Java Release 2.
In this section, we present the basic components of this
infrastructure. Basically we distinguish two different
types of services: external and internal e-services.

Ezxternal services are existing, stationary services,
currently deployed on the Internet, which are not pro-
vided by ServiceGlobe itself. Such services may be
realized on arbitrary systems on the Internet having
arbitrary interfaces for their invocation. Since we want
to be able to integrate these services independent of
their actual invocation interface, e.g., SOAP or RPC,
we use adaptors to transpose internal requests to the
external interface and vice versa. This way, we are
also able to access arbitrary applications, e.g., ERP
applications. Thus external services can be used like
internal services and, from now on, we consider only
internal services.

Internal services are native ServiceGlobe e-services.
They are implemented in Java using the e-service API
provided by the ServiceGlobe system. ServiceGlobe
services use SOAP to communicate with other ser-
vices. Services receive a single XML document as in-
put and generate a single XML document as output.
There are two kinds of internal services, namely dy-
namic e-services and static e-services. Static services
are location-dependent, i.e., they cannot be executed
dynamically on arbitrary ServiceGlobe servers. Such

Internet

UDDI |~-|.
Repository

Internet Server

*_load service

Code Repository |

*1. [Tire Purchasing

Internet Server

Service Host

TireDealer , SOAP

Internet Server

- "
Service Host ! % Mg 81

Internet Server
ServiceGlobe Enabled Web

(] Internet Server

ServiceGlobe Runtime Engine(__] .
Internet Server || }Sennce Host

Forwarding Agency

SOAP .~

~. SOAP

SOAP/XML

load servi cef’

) Internet Server
;" loadservice Service Hogt

A Tire Dedler

Internet Server

Figure 1: Architecture of a ServiceGlobe Enabled Web

services may require access to certain local resources,
e.g., a local DBMS to store data, or require certain
permissions, e.g., access to the file system, that are
only available on dedicated servers. These restrictions
prevent the execution of static services on arbitrary
ServiceGlobe servers. In contrast, dynamic services
are location-independent. They are state-less, i.e., the
internal state of such a service is discarded after a re-
quest was processed, and do not require special re-
sources or permissions. Therefore, they can be ex-
ecuted on arbitrary ServiceGlobe servers.

There is an orthogonal categorization for internal
services: adaptors, simple services, and composite ser-
vices. We have already defined adaptors. Simple ser-
vices are internal services not using any other service.
Composite services are higher-value services assembled
from other internal services. These services are, in this
context, called basis services, because the composite
service is based on them. Note, that a composite ser-
vice can also be used as a basis service for another
"higher-value’ composite service.

Internal services are executed on service hosts which
are standard Internet servers additionally running the
ServiceGlobe runtime engine. If internal services have
the appropriate permissions, they can also use re-
sources of service hosts, e.g., databases. Service-
Globe’s internal services are mobile code, therefore
their executables are loaded on demand from code
repositories onto service hosts or, more precisely, into
the service hosts’ runtime engines. A UDDI [UDDO0)]
server is used to find an appropriate code repository
storing a certain service.

Figure 1 gives an overview of the basic components

of the ServiceGlobe system and their mutual inter-
action (based on the e-procurement scenario of Sec-
tion 3): The negotiator services use external services
(adaptors are omitted in the figure) and the tire pur-
chasing service uses two dynamic services. At first,
a client sends a request (in SOAP) to execute the
tire purchasing service to a service host. This ser-
vice is loaded from a code repository (if not already
cached) and instantiated on the service host. The tire
purchasing service deploys several basis services (here,
two negotiator services) during execution. Therefore,
suitable service hosts are located by UDDI requests
and the negotiator services are loaded and executed
on them on behalf of the tire purchasing service. The
negotiator services deploy external tire dealer and for-
warding agency services to calculate their results. In
the following, we describe the complete process of ser-
vice composition and execution which is composed of
four major steps:

Service Specification: This is the process of cod-
ing e-services. The basic method is to use Java and
the e-service API provided by ServiceGlobe. A more
comfortable way is to use a specialized programming
language, e.g., XL [FKO01], or a graphical tool to draw
a representation (similar to a workflow graph) of the e-
service. Both, programs and graphs must be compiled
into Java classes using the ServiceGlobe API to obtain
services executable on the ServiceGlobe system.

Dynamic Service Selection: In the UDDI infor-
mation model, every service is assigned to a tModel,
which is basically a template defining the semantics
and interfaces of services implementing this template.
Thus, a service is an implementation or instance of its

Tire Purchasing Service:
ask for service hosts

get_ bindings near tire dealer wait for results oor_mcl ude (_:qntracts
of tire dealers (manual optimization) with participants
(O = Y (O = (Y (" \ondluded
N N N N N
fork execute negotiator sort results Icondluded
(tire dealer bindings) on service host by price
Negotiator Service:
get offer from fork wait for results determine
tiredealer (forwarding agency bindings) cheapest offers
Y Y = Y = Y Y
_/ / _/ N _/
get bindings of forwarding get offer from calculate
agencies near tire dealer forwarding agency total costs

Figure 2: Graphical Representations of the Services

tModel. In ServiceGlobe, a composite e-service need
not call a concrete service, but it is sufficient to spec-
ify or “call” a tModel. The implementation of the
tModel is chosen later on, during compilation or exe-
cution. This process of selecting the implementation
for a tModel is called dynamic service selection.

Dynamic service selection is not limited to select
only one instance for a tModel, it is also possible to se-
lect several instances. Since UDDI returns all services,
i.e., their bindings that are assigned to a tModel, more
than one can be called. Thus, a call to a tModel is sub-
stituted by one or more service calls. We distinguish
the following modes of calling a tModel:

one: Only one instance out of all tModel instances re-
turned by UDDI is called. The call is (multiply)
retried in case of failures, e.g., temporary unavail-
ability of the service. If the failures persist, an
alternative e-service is tried.

some: A subset of all services returned by UDDI is
called in parallel. The number of services to be
called is specified as a parameter. Services, which
continue to fail, are replaced with alternative ser-
vices until the demanded amount of e-services re-
sponded successfully or no more services are avail-
able.

all: In this case, all tModel instances returned by
UDDI are called in parallel. If faults occur, no
alternative services can be called, simply because
there are no remaining ones.

Quality-of-Service (QoS) constraints can be applied
to further refine the set of services that are called, e.g.,
‘return only the results of the first ten services that
reply’.

Service Distribution: The main advantage of dy-
namic services is their location independence. At run-
time, this allows dynamic distribution of such services
to arbitrary service hosts, opening a great optimiza-
tion potential to ServiceGlobe: Several instances of a
dynamic service can be executed on different hosts for

load balancing and parallelization purposes. Dynamic
services can be instantiated on service hosts having the
optimal execution environment, e.g., a fast processor,
huge memory, or a high-speed network connection to
other e-services. Together with runtime service load-
ing this provides a large flexibility in order to consider
load balancing or optimization issues. After a service
host is registered in the UDDI repository this new ser-
vice host is instantly incorporated into service execu-
tion.

Runtime Service Loading: After service distribu-
tion, dynamic services are loaded from code reposi-
tories and executed on the chosen service hosts. Thus,
the set of available services is not fixed and can be ex-
tended at runtime by everyone participating in the Ser-
viceGlobe federation. We implemented a comprehen-
sive runtime security system based on security systems
presented in [BKK01, SBK01] to deal with the secu-
rity issues of mobile code introduced by runtime ser-
vice loading. Thus, service hosts are protected against
malicious services.

3 Description of the Demo

In this demo, we present the ServiceGlobe system and
several of its key concepts using an automobile indus-
try e-procurement scenario. For simplicity, we do not
describe a complete e-procurement solution compris-
ing of a marketplace service and automobile industry
supplier services. Instead, we concentrate on the ex-
ample of tire purchasing.

Tire Purchasing Scenario

In this scenario a car manufacturer requires an e-
service for the task of purchasing tires and employing
a forwarding agency to deliver these tires. In detail,
this e-service has to perform the following tasks: First,
it has to invite offers from available tire dealers for a
given type and quantity of tires. Second, it must invite
offers for the delivery of these tires to the car manufac-
turer. Third, it must calculate the cheapest combined

offer for the purchase of tires from a tire dealer and
the delivery of these tires by a forwarding agency. At
last, the e-service must place purchase orders, based on
the cheapest combined offer, at both, the tire dealer
and the forwarding agency. If placing of a purchase
order fails, the second cheapest combined offer should
be tried (and so on).

The new e-service is split into two separate, dy-
namic services: a tire purchasing service and a nego-
tiator service. This allows an optimized service exe-
cution by pushing negotiator services to service hosts
close to tire dealers. The negotiator service instances
are executed on several service hosts in parallel and
thus it is assured that communication with the for-
warding agency services is cheap. Using a graphical
tool, the resulting services look like the graphs shown
in Figure 2.

The tire purchasing service is the main service which
is called directly by the car manufacturer. First, the
service queries UDDI for tire dealer services (using a
UDDI tModel). Using this technique, the service is
independent of the available tire dealer services at a
particular time and the implementation need not be
changed to remove outdated or add new tire dealers.
For every tire dealer service, we look for a service host
close to the location of the tire dealer to minimize com-
munication costs to the tire dealer service as well as
to the forwarding agency services later on. Next, we
execute a negotiator service on each of these service
hosts. For performance reasons, all negotiator services
are executed in parallel. Finally, we wait for the results
of all negotiators. A timeout handles services that
do not respond in time. After collecting the results,
the combined offers (tires and delivery) are sorted by
price and the tire purchasing service tries to contract
a tire dealer and a forwarding agency starting with the
cheapest offer. If one of the two participants fails for
any reason, the contract conclusion is aborted and the
next (more expensive) offer is used.

A negotiator service is called with information
about which tire dealer it should contact. Its first ac-
tion is to invite an offer from the given tire dealer.
After that, it calls forwarding agency services using
an all-mode call. Additionally, a QoS constraint filter-
ing all forwarding agencies geographically close to the
tire dealer is used. In our example, it is assumed that
forwarding agencies in the neighborhood of tire dealers
have the cheapest offers due to short routes. The nego-
tiator invites offers from all selected forwarding agency
services in parallel and waits for the results, calculates
the overall costs (tires and delivery), and determines
the five cheapest offers. These offers are sent back as
result.

What Will Be Shown

The demo consists of two applications. First, a front-
end to the tire purchasing service allows entering data

into a form and executing the service. The front-end
also allows viewing all XML documents exchanged be-
tween the various services in the execution. Second, a
map application depicts all services and their location
graphically. It allows to add and remove tire dealer
and forwarding agency services at runtime, to view
all interactions between the services, and to influence
the execution by setting individual timeouts, simulate
failures, and so on.

Using these applications we demonstrate some of
the major concepts of ServiceGlobe. First, we show
where and how dynamic service selection takes place in
our e-procurement scenario: Negotiator services con-
tact several forwarding agencies, using dynamic ser-
vice selection and an additional QoS constraint fil-
tering all forwarding agencies geographically close to
the corresponding tire dealer. Second, we demonstrate
runtime service loading and service distribution: The
tire purchasing service can be instantiated on every
service host on the Internet (which we simulate, of
course). The negotiator services are pushed close to
the location-dependent tire dealer services such that
communication overhead is reduced. This leads to load
balancing (different service hosts for negotiators), to
parallelization (negotiators work in parallel), and to
profit from cheaper communication costs (execution
close to tire dealers).

References

[BKK*01] R. Braumandl, M. Keidl, A. Kemper, D. Koss-
mann, A. Kreutz, S. Seltzsam, and K. Stocker. Object-
Globe: Ubiquitous query processing on the Internet. The
VLDB Journal: Special Issue on E-Services, 10(3):48—
71, August 2001.

[FKO01] D. Florescu and D. Kossmann. An XML Program-
ming Language for Web Service Specification and Com-
position. IEEE Data Engineering Bulletin, 24(2):48-56,
2001.

[NET] Microsoft .NET. http://www.microsoft.com/net.

[SBKO1] S. Seltzsam, S. Borzsonyi, and A. Kemper. Secu-
rity for Distributed E-Service Composition. In Proc. of
the 2nd Intl. Workshop on Technologies for E-Services
(TES), pages 147-162, Rome, Italy, 2001. Springer.

[Sun] Sun Open Net Environment (Sun ONE). http://
WWW . Sun.com/sunone.

[UDDO00] Universal Description, Discovery and Integration
(UDDI) Technical White Paper. White Paper, Ariba
Inc., IBM Corp., and Microsoft Corp., September 2000.
http://www.uddi.org.

[WSP] HP Web Services Platform. http://www.hp.com/

go/webservices.

