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Abstract. In this work, we present novel techniques for flexible and reliable ex-
ecution and deployment of Web services which can be integrated into existing
service platforms. The first technique, dynamic service selection, provides a layer
of abstraction for service invocation offering Web services the possibility of se-
lecting and invoking Web services at runtime based on a technical specification
of the desired service. The selection can be influenced by using different types of
constraints. The second technique, a generic dispatcher service capable of auto-
matic service replication, augments Web services with load balancing and high
availability features, without having to consider these features at the services’ de-
velopment. We implemented these techniques within the ServiceGlobe system,
an open Web service platform.

1 Introduction

Web services are a new technology for the development of distributed applications on
the Internet. By a Web service (also called service or e-service), we understand an
autonomous software component that is uniquely identified by a URI and that can be
accessed by using standard Internet protocols like XML, SOAP, or HTTP [18]. Due
to its potential of changing the Internet to a platform of application collaboration and
integration, Web service technology gains more and more attention in research and
industry; initiatives like HP Web Services Platform, Microsoft .NET, or Sun ONE show
this development. All these frameworks share the opinion that services are important
for easy application collaboration and integration and they try to provide appropriate
tools and a complete infrastructure for implementing and executing Web services.

Our objective in this work is to present new techniques for Web service execution
and deployment in dynamic environments. The first technique we present is dynamic
service selection. It offers the possibility of selecting and invoking services at runtime
based on a technical specification of the desired service. Therewith, it provides a layer
of abstraction from the actual services. Constraints enable Web services to influence
dynamic service selection, e.g., services can be selected based on the metadata available
about them.

We address load balancing and high availability by providing a generic, modular
dispatcher service for augmenting services with these features, without having to con-
sider them during the services’ development. The dispatcher is a software-based layer-7
switch with the known advantages: it forwards requests to different service instances
and therefore reduces the risk of a service being unavailable and speeds up request pro-
cessing because of load balancing respectively load sharing. Our dispatcher implements
? This research is done in cooperation with the Advanced Infrastructure Program (AIP) group
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a new feature called automatic service replication. Using this feature, new (individually
configured) services can be installed on idle hosts on behalf of the dispatcher to leverage
available computing power. Additional advantages are that the dispatcher is integrated
into the service platform and is completely transparent to the callers of a service.

We implemented both techniques, dynamic service selection and the dispatcher,
within the ServiceGlobe system [11] which is described in the next section. The tech-
niques can also be integrated into existing service platforms without major modifica-
tions. A demo of ServiceGlobe was given at VLDB’02 [12]. As part of SAP’s adaptive
computing infrastructure, the ServiceGlobe system is installed on a blade server with
160 processors overall (with 2 and 4 processors per server blade, respectively), which is
operated by the Advanced Infrastructure Program group of SAP. Several performance
evaluations with high-volume business applications are conducted using this system.
The presented technologies are currently integrated into the SAP NetWeaver platform
to supplement its service virtualization capabilities. A demonstration was shown at the
Sapphire 2003 [1], SAP’s user conference.

The remainder of this paper is structured as follows: Section 2 introduces the Ser-
viceGlobe system. Sections 3 and 4 present dynamic service selection and the generic
dispatcher capable of automatic service replication, respectively. Finally, Section 5
gives some related work and Section 6 concludes this paper.

2 Architecture of ServiceGlobe

The ServiceGlobe system is a lightweight, distributed, and extensible service platform.
It is fully implemented in Java Release 2 and based on standards like XML, SOAP,
UDDI, and WSDL. Additionally, the system supports mobile code, i.e., services can
be distributed and instantiated during runtime on demand at arbitrary Internet servers
participating in the ServiceGlobe federation. Of course, ServiceGlobe offers all the
standard functionality of a service platform like a transaction system and a security
system [19]. These areas are well covered by existing technologies and are, therefore,
not the focus of this work. We will now explain the ServiceGlobe infrastructure. First
of all, we distinguish between external and internal services.

External servicesare services currently deployed on the Internet, which are not
provided by ServiceGlobe itself. Such services are stationary, i.e., running only on a
dedicated host, are realized on arbitrary systems on the Internet, and have arbitrary
interfaces for their invocation. If they do not provide an appropriate SOAP interface, we
useadaptorsto transpose internal requests to the external interface and vice versa, to
be able to integrate these services independent of their actual invocation interface, e.g.,
RPC. This way, we are also able to access arbitrary applications, e.g., ERP applications.
Thus external services can be used like internal services.

Internal servicesare native ServiceGlobe services implemented in Java using the
service API provided by the ServiceGlobe system. ServiceGlobe services use SOAP
to communicate with other services. There are two kinds of internal services, namely
dynamicservices andstatic services. Static services are location-dependent, i.e., they
cannot be executed dynamically on arbitrary ServiceGlobe servers, because, e.g., they
require access to certain local resources like a DBMS. In contrast, dynamic services
are location-independent. They are state-less, i.e., the internal state of such a service is
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discarded after a request was processed, and do not require special resources or permis-
sions. Therefore, they can be executed on arbitrary ServiceGlobe servers.

Internal services are executed onservice hosts, i.e., hosts connected to the Inter-
net which are running the ServiceGlobe runtime engine. ServiceGlobe’s internal ser-
vices are mobile code, therefore their executables can be loaded on demand fromcode
repositoriesinto a service host’s runtime engine (this feature is calledruntime service
loading). A UDDI server is used to find an appropriate code repository storing a cer-
tain service. Thus, the set of available services is not fixed and can be extended at
runtime by everyone participating in the ServiceGlobe federation. If internal services
have the appropriate permissions, they can also use resources of service hosts, e.g.,
databases. These permissions are part of the security system of ServiceGlobe which is
based on [19] and they are managed autonomously by the administrators of the service
hosts. This security system also deals with the security issues of mobile code introduced
by runtime service loading. Thus, service hosts are protected against malicious services.

Runtime service loading allowsservice distributionof dynamic services to arbi-
trary service hosts, opening optimization potential: Several instances of a dynamic ser-
vice can be executed on different hosts for load balancing and parallelization purposes.
Dynamic services can be instantiated on service hosts having the optimal execution en-
vironment, e.g., a fast processor, large memory, or a high-speed network connection to
other services. Of course, this feature also contributes to reliable service execution be-
cause unavailable service hosts can be replaced dynamically by available service hosts.
Together with runtime service loading this provides the flexibility needed for load bal-
ancing or optimization issues.

3 Dynamic Service Selection

In UDDI, every service is assigned to a tModel1 which provides a semantic classifica-
tion of a service’s functionality and a formal description of its interfaces. So, a service
can be called animplementationor an instanceof its tModel. With dynamic service
selection (DSS), instead of explicitly stating an actual access point in a service, it is
also possible to reference or “call” a tModel. Thus, one defines the functionality of the
service that should be called rather than its actual implementation. Without DSS, the
selection of services from UDDI based on a search criteria like a tModel has to be done
manually by a programmer when implementing a Web service. Furthermore, the search
criteria available in UDDI are less general and there are no criteria for influencing ser-
vice invocation or for filtering service replies.

1 In fact, a service in UDDI can be assigned to several tModels. DSS could be adjusted to allow
calling services which implement several tModels. As there is no essential difference to calling
a single tModel, this will not be considered in the following.



As example for DSS, see Figure 1: Three services are assigned to tModel T: Service
A, B, and C. Assume, that a programmer wants to implement a new Web service which
should invoke a service assigned to tModel T. Without DSS, the programmer would
search UDDI for an appropriate service, e.g., Service A, and use its access point in
the new Service N1. With DSS, the programmer will instead develop Service N2. This
service does not contain any hard-coded access point, instead it contains a call to the
tModel T. At runtime, the service will query UDDI for an appropriate Web service and
invoke it. If an invocation fails, alternative services are tried until an invocation succeeds
(as depicted in Figure 1) or no more alternative services are available.

As already mentioned, DSS is implemented within ServiceGlobe. The ServiceGlobe
API provides methods for Web services to invoke tModels and to optionally specify
constraints and/or use constraints contained in the service’s context.

3.1 Constraints
Constraints are used to influence DSS. They can be passed to a service platform within
a service’s context or by specifying them directly when calling a tModel. The term
context refers to information about the consumer of a Web service which is used by
the service to adjust its execution and output to provide a customized and personalized
version of itself. In the ServiceGlobe system, context is transmitted in the header of
the SOAP messages that services send and receive. The integration of constraints into
context information enables not only the invoked services to take advantage of them, but
also further services invoked by these services, as the context information of a service
is (automatically) included into SOAP messages sent by it.

Constraints can be differentiated intopreferencesandconditions.2 Conditions must
be fulfilled, whereas preferences should be fulfilled. When considering preferences in
DSS, a service platform at first invokes services that fulfill these preferences. If there
is an insufficient number of such services, additional services are invoked which do
not fulfill all preferences (but, of course, they must fulfill all conditions). Orthogonally,
there are five different types of constraints: metadata, location, mode, reply, and result
constraints. For each type, there are preferences and conditions; though, for mode and
result constraints, preferences are useless.

Metadata Constraints:Prior to the invocation of services, when the service plat-
form requests all services assigned to a tModel, metadata constraints are applied as
filter on all services returned by UDDI. Metadata constraints are basically XPath [6]
queries that are applied to the metadata of a service. Metadata about a service includes
primarily its UDDI data. Also, additional metadata which is stored in other metadata
repositories [10] and that cannot be found in UDDI may be contained. The following
example shows a metadata preference that favors services assigned to a businessEntity
with nameCompany:
<metadataPreference>

/businessEntity/name="Company"
</metadataPreference>

Location Constraints:Location constraints are used to specify the place of execu-
tion of a Web service, i.e., the service host. For static services, this allows their selection

2 A similar classification of conditions of SQL statements in hard and soft constraints is de-
scribed in [13].



based on their location. For dynamic services, this ensures that they are instantiated and
executed preferably (preference) or strictly (condition) at the given location. The in-
formation about the location of services and service hosts is retrieved from the UDDI
repository. The location can be specified by, e. g., a host’s network address or geograph-
ically based on GPS coordinates or ISO 3166 codes.

Mode Constraints:DSS is not limited to invoke only one instance of a given tModel;
it is also possible to invoke several instances. With a mode constraint the number of
services that should be invoked can be specified. There are three modes available:3

Using theone mode, only one instance out of all tModel instances is called. In case of
a failure, e.g., unavailability of a service, an alternative service is tried. Using thesome
mode, a subset of all services returned by UDDI is called in parallel.4 The number of
services is specified as an absolute value or as a percentage. Services which fail are
replaced with alternative services. Using theall mode, all returned tModel instances are
called. Obviously, no alternative services can be called if failures occur. The following
example shows a mode constraint that specifies that five percent of the available services
should be invoked:

<modeCondition modeType="Some" number="5%" />

Reply Constraints:Reply constraints are evaluated after a reply of an invoked ser-
vice was received. Every reply not fulfilling all relevant reply constraints is discarded.
There are two kinds of reply constraints.Selection constraintsare XPath queries which
are applied to the reply of a service, including its SOAP parts. Withproperty con-
straints, replies can be selected based on a set of properties of the reply. Properties
must be provided either by the service platform or by the invoked service. A service ac-
complishes this by including corresponding XML elements in its reply. ServiceGlobe
itself supports properties for encryption, signature, and age of data. Using the first two
properties, it is possible to verify if a reply is encrypted or signed, respectively, and by
whom it is signed. The third property can be used to check the age of the returned data.

Result Constraints:Result constraints refer to all replies received so far. There are
two kinds of result constraints. With atimeout constraint, a maximal waiting time for
replies of invoked services can be set. After its expiry, all pending services are aborted
and all replies received so far are returned to the calling service. The following con-
straint is an example of a timeout constraint:

<timeoutCondition value="100" valueUnit="Seconds"/>

With first-n constraints, the call to a tModel can be ended after a predetermined
number of replies was received. The calling service gets only these replies as result of
its call. Services that have not responded until this moment are aborted.

3.2 Combination of Constraints

Constraints can be combined using the operators AND and OR. By the combination of
constraints, conflicts can be created which may prevent fulfilling all given constraints.
As a consequence, only a subset of the given constraints may be fulfillable, as the ex-
ample in Figure 2 shows (orGroup represents the OR operator).

3 These modes are similar to unicast, multicast, and broadcast communication on networks.
4 It should be noted that one and all mode are obviously special cases of the some mode.



<orGroup>
<metadataCondition>

/businessEntity/name="Company"
</metadataCondition>
<timeoutCondition value="100" valueUnit="Seconds"/>

</orGroup>
Fig. 2. Combination of Constraints

Initially, the service platform has two choices: On the one hand, it can invokeonly
services of the companyCompany and wait for their replies (therewith fulfilling only
the first constraint). On the other hand, it can invokeall servicesassigned to the tModel.
But if a timeout occurs, the service platform faces the situation that it either must return
all replies received so far immediately (therewith fulfilling only the second constraint)
or that it must ignore the timeout and wait at least for all replies (therewith fulfilling only
the first constraint). In the latter case, though, it invoked too many services initially. So,
in general, the service platform is unable to fulfill both constraints at the same time.

3.3 Evaluation of Constraints

This section explains how a tModel call is actually executed and how constraints are
evaluated in this process. At first, constraints from all different sources are combined
conjunctively into one single combined constraint, calledmain constraint, using the
AND operator. This constraint is passed as input to the tModel call. Its evaluation con-
sists of two phases: First, it is transformed into disjunctive normal form (DNF) and con-
flicts are resolved. Second, UDDI is queried for services assigned to the given tModel
and the services are invoked considering the main constraint.

Preprocessing of Constraints:First, the main constraint is transformed into DNF. Note,
that the same constraint can now be present multiple times in the transformed constraint.
Afterwards, all constraints of anAND term, i.e., a term only containing AND operators,
are sorted according to their time of evaluation. The order is: metadata, location, mode,
reply, and result constraints.

Then, the main constraint is checked for conflicts. Only conflicts within a single
AND term are resolved in this phase, conflicts between different AND terms are re-
solved later, during the invocation phase. Within an AND term, a conflict occurs if it
either contains more than one mode constraint or more than one result constraint. For
mode constraints, this is obvious. For result constraints, there are some rare situations
where several result constraints would make sense. But, as we see no real benefit, two
or more result constraints per AND term are prohibited.5 Of course, conflicts between
metadata, location, or reply constraints are possible in principle, e.g., an AND term that
contains metadata constraints with contradictory XPath queries. Detecting this type of
conflict would require a detailed investigation of the XPath queries.

Conflicts are resolved by keeping only the constraint with the maximum priority
and removing all other conflicting constraints. Priorities range from 0 (minimum) to∞
(maximum) and they can be assigned to a term by its creator, e.g., the consumer or a
Web service. An additional, implicit prioritization is given by the sequence of the terms

5 The implementation would be straightforward, although requiring many, even though simple
case discriminations.



in their XML representation. The later a term is defined there the less its priority is. If
two terms have the same explicit priority, their implicit priority decides which one has
the higher priority.

At last, identical mode and result constraints which are contained in several AND
terms because of the transformation into DNF are merged.6 The resulting terms are
calledmerged AND terms. Without merging, a service platform would evaluate identi-
cal mode and result constraints multiple times which would result in a different result.
Only mode and result constraints are considered for merging because, unlike the other
constraint types, they are restrictions on sets of services respectively replies, not on sin-
gle services or replies. Therefore, the result of the main constraint is only modified by
duplicating them when transforming the main constraint into DNF.

Invocation of Web Services:After the main constraint has been preprocessed, UDDI is
queried for all information about services assigned to the given tModel. These services
as well as their metadata are stored in aservices list. Initially, there is one such ser-
vices list for every merged AND term. In the following, services which do not fulfill a
condition are removed from a services list. Preferences are used to sort this list.

Now, metadata constraints are applied to the services list of their merged AND
term, followed by location constraints. For the evaluation of location constraints for
dynamic services, all available service hosts are retrieved from UDDI first. Then, the
location constraints are used to filter and sort this list of service hosts (similar to services
lists). For each merged AND term, the corresponding service hosts list is assigned to all
dynamic services of this term.

Next, all mode constraints of the main constraint are evaluated in parallel, i.e., Web
services are invoked as specified by the mode constraints considering all relevant ser-
vices lists. As a consequence of the merging of identical mode constraints, services lists
from more than one merged AND term may have to be considered. For each invocation
of Web services based on a single mode constraint, the corresponding services list is
processed sequentially, starting with the service at the top (which has the highest pri-
ority). Thereby static services are invoked only once, dynamic services can be invoked
as often as there are service hosts in their service hosts list (service host are chosen
according to their priority).

Every time the reply of a Web service is received, all relevant reply constraints are
applied to it. Note, that the Web service may be contained in several services lists,
so there can be more than one merged AND term with relevant reply constraints. The
service platform must also check whether the invocation phase must be ended. This is
the case if the result constraint with the highest priority is fulfilled. After the invocation
phase ended, all outstanding requests are aborted and all replies are returned to the
calling Web service.

4 Load Balancing and Service Replication

For large-scale, mission-critical applications, such as an enterprise resource planning
system like SAP with thousands of users working concurrently, a single service host
is not sufficient to provide low response times. Even worse, if there are any problems

6 Basically, merging means factoring out identical mode and result constraints.
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with the service or the service host, the service will be completely unavailable. Such
downtime can generate high costs, even if a service host is only down for some min-
utes. Therefore, it is necessary to run several instances of a service on multiple service
hosts for fault tolerance reasons and a load balancing component to avoid load skew. A
server blade architecture is very beneficial for this purpose, because scale-out of com-
puting power can be done on demand by adding additional server blades. Of course, a
traditional cluster of service hosts connected by a LAN can be used as well but with
higher total cost of ownership and normally slower network connections.

Since it is very expensive and error-prone to integrate the functionality for the co-
operation of the service instances directly into every new service, we propose a generic
solution to this problem: a modulardispatcher servicewhich can act as a proxy for
arbitrary services. Using this dispatcher service, it is possible to enhance many exist-
ing services or develop new services with load balancing and high availability features
without having to consider these features during their development. All kinds of ser-
vices are supported as long as concurrency control mechanisms are used, e.g., by us-
ing a database as back-end (as many real-world services do). The concurrency control
mechanisms ensure a consistent view and consistent modifications of the data shared
between all service instances. Of course, if there is no data sharing between different
instances of a service, the dispatcher can be used as well. An additional feature of our
dispatcher is calledautomatic service replicationand enables the dispatcher to install
new instances of static services on demand.

4.1 Architecture of the Dispatcher

Our dispatcher is a software-based layer-7 switch7. Such switches perform load balanc-
ing (or load sharing) using several servers on the back-end with identically mirrored
content and a dispatching strategy like round robin or more complex strategies using
load information about the back-end servers. Our solution is a pure software solution
and—in contrast to existing layer-7 switches—is realized as a regular service. Thus, our
dispatcher is more flexible, extensible, and seamlessly integrated into the platform.

7 This kind of switch is also used in the context of Web servers [4].



Figure 3 shows our dispatcher monitoring three service hosts running two instances
of Service S (both connected to the same DBMS). The database server is monitored
as well using a stand-alone monitoring application. Using information from monitoring
services and monitoring applications, the dispatcher generates the dispatcher’s local
view of the load situation of the service hosts. Upon receiving a message (in this case
for Service S), the dispatcher looks for the service instance running on the least loaded
service host and forwards the message to it. As already mentioned, our dispatcher is
modular, as shown in Figure 4. There are four types of modules:

Operation Switch Module: This module controls the operation mode of the dispatcher
on a per-service level. In our implementation, the standard operation mode isforward,
other modes arebuffer or reject. The latter two modes are set to prevent the more ex-
pensive execution of the dispatch module when there are no suitable service hosts.

Dispatch Module: This module implements the actual dispatching strategy. It can access
the load situation of service hosts and of other resources for the assignment of requests
to service instances. Possible results of a dispatch strategy are an assignment of a re-
quest to a service instance, a command to initiate a service replication (see below), a
reject command, or a buffer command. We implemented a strategy which assigns re-
quests to the service instance on the least loaded service host based on the CPU load. We
additionally implemented a more sophisticated strategy which handles the load of CPU
and main memory on different types of resources (e.g., service hosts and database man-
agement systems) needed for the execution of a service. This strategy prevents overload
situations not only on service hosts but also on other resources like DBMSs. Currently,
we are working on performance experiments for these strategies.

Advisor Modules: Advisor modules are used to collect data for the dispatcher’s view of
the load situation of all relevant resources. We implemented advisor modules to measure
the average CPU and memory load on service hosts (using the monitoring services) and
on hosts running database management systems (using the monitoring applications).
There are lots of reasonable different advisor modules. The simplest kind of advisor
module only knows two conditions of a resource: available or unavailable. For service
hosts, this could be done by a simplepingon the host running the ServiceGlobe system.
More complex advisors can provide more detailed information like CPU or main mem-
ory load of a service host, or the load of a database management system depending on
CPU, memory, disc I/O, and others.

Config Modules: The configuration modules are used to generate the configuration for
new service instances. The modules can access the load situation archive which stores
aggregated load information to find, e.g., the database host which was least loaded in
the last few days. This is very beneficial if there are, e.g., several instances of a database
system working on replicated data. Using historic load information, a new service in-
stance can be advised to connect to the instance of the DBMS which had the lowest
average load in the past.

To turn an existing service into a highly available and load balanced service, a prop-
erly configured dispatcher service must be started. Additionally, some new UDDI data
has to be registered and some existing data has to be modified so that all service in-
stances and all service hosts can be found by the dispatcher. After that, the service
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instances are no longer contacted directly, but via the dispatcher service controlling the
forwarding of the messages. A cluster of service hosts can be easily supplemented with
new service hosts. The administrators of these service hosts only have to install the
ServiceGlobe system and register them at the UDDI repository using the appropriate
tModel, e.g., ServiceHostClusterZ, indicating that these service hosts are members of
cluster Z. The dispatcher will automatically use these service hosts as soon as it notices
the changes to the UDDI repository.

4.2 Load Measurement

The dispatcher’s view of the load situation is updated at intervals of several seconds
to prevent overloading the network. Thus, this view is constant between two updates.
Therefore, a service host SH will still be considered having low load, even if several
requests have been assigned to it after the last load update. Without precautions, the
dispatcher might overload SH for this reason. To avoid these overload situations, the
dispatcher adds “penalties” to its view of the load once a request is assigned. Figure 5
illustrates the load of SH, the load reported to the dispatcher (load without penalties),
and the load with penalties.

The grey, thick line represents the loadLSH(t) of the service host SH. The dashed
line represents the dispatcher’s viewD′

SH(t) of the load of SH which is the average load
of SH over the last update interval of lengthIu. This average load is calculated by SH
and sent to the dispatcher at regular intervals. The functionint(t) calculates the number
of the interval containing a given timet:

int(t) := bt /Iuc
The dispatcher’s view can now be written as follows:

D′
SH(t) := avg

{
LSH(t′)

∣∣ int(t′) = int(t) − 1
}

The black, solid line shown in Figure 5 represents the dispatcher’s view including penal-
ties DSH(t). The initial (maximum) value of a penalty (represented byPm

SH,S in the
equations) depends on the service S and the performance of the service host SH and is
configurable. This way, every assignment of a requestRi, i.e., every dispatch operation
(represented bydi, i ∈ N; d7 in the figure), has an effect on the dispatcher’s view of the
load situation, immediately. If there is a load update from SH shortly after an assign-
ment of a requestRi, but before SH started to processRi, the associated penalty would



be lost if the dispatcher would replace its view with the reported load, because this load
would not include load caused byRi. Thus, the load reported by the load monitors
and the dispatcher’s view of the load situation are remerged using aging penalties: the
penalties are decreasing over time and added to further load values reported by the ser-
vice host until the penalties are zero. The timeIp until a penalty is zero is configurable
and normally shorter than shown in the picture, e.g., twice the time a requestRi needs
to arrive at SH plus the time SH needs to start processingRi. After Ip, we assume that
a requestRi arrived at SH and that the load caused byRi is already included in the
reported load, so that the dispatcher needs not to further add any penalties forRi. Using
our notation and definingtime(di) to indicate the time of the assignmentdi, host(di) to
indicate the destination host of the assignmentdi, andservice(di) to indicate the desti-
nation service of the assignmentdi, the view with penaltiesDSH(t) can be calculated as
follows: The penaltyPdi for the assignmentdi is zero before the assignment. AfterIp,
it is zero again. In between this interval the penalty is calculated using a linear function
fdi(t) with the following constraints:fdi(0) = Pm

host(di),service(di)
andfdi(Ip) = 0.

Pdi(t) :=
{

0 if t < time(di) ∨ t > time(di) + Ip

fdi(t − time(di)) else

When receiving load updates from the service host SH, i.e.,t = x ∗ Iu for x ∈ N,
the load including penalties is calculated by adding all aged penalties of assignments to
this SH to the reported value:

AssSH :=
{
a ∈ N

∣∣ host(da) = SH
}

DSH(t) := D′
SH(t) +

∑
i∈AssSH

Pdi(t) if ∃x ∈ N : t = x ∗ Iu

Within an update interval, penalties of new assignments to SH, i.e., assignments
done within the current update interval, are added to this load as soon as they occur:

NewAssSH(t) :=
{
a ∈ AssSH

∣∣ int(time(da)) = int(t) ∧ t > time(da)
}

DSH(t) := DSH (int(t) ∗ Iu) +
∑

i∈NewAssSH(t)

Pm
SH,service(di)

if ∀x ∈ N : t 6= x ∗ Iu

4.3 Automatic Service Replication
If all available service instances of a static service8 are running on heavily loaded ser-
vice hosts and there are service hosts available having a low workload, the dispatcher
can decide to generate a new service instance using a feature called automatic service
replication. Figure 6 demonstrates this feature: service hosts A and B are heavily loaded
and host C currently has no instance of Service S running. Thus, the dispatcher sends
a message to service host C to create a new instance of Service S. The configuration of
the new Service S is generated using the appropriate configuration module. If no service
hosts having low workload are available, the dispatcher can buffer incoming messages
(until the buffer is full) or reject them depending on the configuration of the dispatcher
instance and the modules.

8 Dynamic services can be executed on arbitrary service hosts and need not be installed anyway.



4.4 High Availability / Single Point of Failure
Using several instances of a service greatly increases its availability and decreases the
average response time. Just to get an impression about the high level of availability,
we want to sketch this very simple analytical investigation. Assuming that the server
running the dispatcher itself and the database server (in our example the database server
is needed for service S) are highly available, the availability of the entire system depends
only on the availabilityαServiceHost = α of the service hosts. The availability of a pool
of service hosts can be calculated as follows:

α =
MTBF

MTBF + MTTR
(1) αpool =

N∑
i=1

αi(1 − α)(N−i) = 1 − (1 − α)N (2)

Equation 1 calculates the availability of a single service host based on its MTBF
(mean time between failures) and MTTR (mean time to repair). The availability of
a pool ofN service hosts can be calculated using Equation 2. Even assuming very
unreliable service hosts with MTBF= 48h and MTTR= 12h a pool with 8 members
will only be unavailable about 1.5 minutes a year.

Because database management systems are very often mission critical for compa-
nies, there are different approved solutions for highly available database management
systems [3, 9]. Thus, the remaining single point of failure is the dispatcher service.
There are several possibilities to reduce the risk of a failure of the dispatcher. A pure
software solution is to run two identical dispatcher services on two different hosts. Only
one of these dispatchers is registered at the UDDI server. The second dispatcher is the
spare dispatcher and it monitors the other one (“watchdog mechanism”). If the first dis-
patcher fails, the spare dispatcher modifies the UDDI repository to point to the spare
dispatcher. If the clients of the dispatcher call services according to the UDDI service
invocation pattern, any failed service invocation will lead to a check for service relo-
cation. Thus, failures of the first dispatcher will lead to an additional UDDI query and
an additional SOAP message to the second dispatcher. Of course, there are many other
possible solutions which are adaptable for a highly available dispatcher service known
from the fields of database systems [3, 9] and Web servers [4] including solutions based
on redundant hardware, but this is out of the scope of this paper.

5 Related Work

The success of Web services results in a large number of commercial service platforms
and products, e.g., the Sun ONE framework which is based on J2EE, Microsoft .NET,
and HP Web Services Platform. Furthermore, there are research platforms like Service-
Globe [12, 11] and SELV-SERV [2] which focus on certain aspects in the Web service
area. In SELV-SERV, services with equal interfaces are grouped together into service
communities, but no strategies for selecting services out of these service communities
are presented. The project focuses rather on composing Web services using state charts.
The eFlow system [5] models composite services as business processes, specified in
eFlow’s own composition language, and provides techniques similar to DSS. With dy-
namic service discovery, a composite service searches for services based on available
metadata, its own internal state, and a rating function. Multiservice nodes allow to in-
voke several services in parallel, similar to DSS mode and result constraints, though



with different termination criteria. In contrast to eFlow, DSS allows the combination
of all these different constraints in a flexible way. In addition, eFlow does not utilize
standards like UDDI or WSDL for its adaptive techniques.

In [15] and [17], agent-based architectures are presented which provide service se-
lection based on a rating system for Web services. In Jini [20], clients utilize a lookup
service to discover services based on the Java interfaces they implement and service
attributes. The lookup service’s attribute search is limited to searching only for exact
matches [16]. Extensions have been proposed to support, e.g., attributes providing con-
text information about services [14] or more sophisticated match types [16]. Based on
WSDL, WSIF [21] allows a Web service to select a specific port of a service it wants
to invoke, i.e., its actual access point and the communication protocol and message for-
mat to use, at runtime. The selection is limited to the information provided by WSDL
documents, as no service repositories like UDDI are consided.

A lot of work has been done in the area of load balancing, e.g., load balancing for
Web servers [4] and load balancing in the context of Grid computing [8]. Grid comput-
ing is focused on distributed computing in wide area networks involving large amounts
of data and/or computing power, using computers managed by multiple organizations.
Our dispatcher is focused on distributing load between hosts inside a LAN. In contrast
to dispatchers for Web servers [4], dispatchers for service platforms cannot assume that
all requests to services produce the same amount of load, because the computational de-
mands of different services might be very different. There are also commercial products
available, e.g., DataSynapse [7] which offers a self-managing distributed computing so-
lution. One of the key differences of this system is, that it works pull-based, i.e., hosts
are requesting work, instead of using a dispatcher pushing work to the hosts. Addition-
ally, DataSynapse requires an individual integration of every application, which is not
necessarily an easy task for arbitrary applications.

6 Conclusion
In this work, we presented novel techniques for flexible and reliable Web service execu-
tion and deployment in dynamic environments. We introduced dynamic service selec-
tion which offers Web services the possibility to select and invoke services at runtime
based on a technical specification of the desired service. We showed how constraints
can be used to influence dynamic service selection. We also addressed load balancing
and high availability issues by providing a generic, modular, and transparent dispatcher
for load balancing including automatic service replication. We implemented these tech-
niques within ServiceGlobe, an open Web service platform. For the future, we plan to
work on caching of SOAP messages and to investigate context for Web services.
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