
ServiceGlobe: Flexible and Reliable Web Services on the Internet ∗

Markus Keidl Stefan Seltzsam Alfons Kemper
Universität Passau, 94030 Passau, Germany
<lastname>@db.fmi.uni-passau.de

1. INTRODUCTION
Web services are a new technology for the development of dis-
tributed applications on the Internet. By a Web service (also called
service), we understand an autonomous software component that
is uniquely identified by a URI and that can be accessed by using
standard Internet standards like XML, SOAP, or HTTP [4].

Our objective in this work is to present new techniques for Web
service execution and deployment which can be integrated into ex-
isting platforms: Dynamic service selection offers Web services
the possibility to select and invoke services at runtime based on a
technical specification of the desired service, thereby providing a
layer of abstraction from the actual services. A generic, modular
dispatcher service addresses load balancing and high availability of
services. This dispatcher implements automatic service replication
to be able to install new service instances on idle hosts.

We present these techniques within the scope of the Service-
Globe system [1, 3], an open Web Service platform. ServiceGlobe
supports mobile code, i.e., services can be distributed and instanti-
ated during runtime on demand at arbitrary Internet servers partic-
ipating in the ServiceGlobe federation. Also, it offers all standard
functionality of a service platform like SOAP/XML communica-
tion, a transaction system, and a security system [5]. These areas
are already well covered by existing technologies and are not the
focus of this work.

Due to its potential of changing the Internet to a platform of
application collaboration and integration, Web service technology
gains more and more attention in research and industry; initiatives
like HP Web Services Platform, Microsoft .NET, and Sun ONE
show this development. All these frameworks share the opinion
that services are important for easy application collaboration and
integration and they try to provide appropriate tools and a complete
infrastructure for implementing and executing Web services.

2. ARCHITECTURE OF SERVICEGLOBE
The ServiceGlobe system is a distributed and extensible service
platform. It is completely implemented in Java and based on stan-
dards like XML, SOAP, UDDI, and WSDL. In this section, we
present the basic components of the ServiceGlobe system. First
of all, we distinguish between external and internal services.

External servicesare existing, stationary services, currently de-
ployed on the Internet. Such services have arbitrary interfaces for
their invocation. To integrate these services independent of their
actual invocation interface, e.g., SOAP or RPC, we useadaptorsto
transpose internal requests to the external interface and vice versa.
Thus, external services can be used like internal services.

Internal servicesare native ServiceGlobe services which are im-
plemented in Java using the API provided by ServiceGlobe. Ser-
viceGlobe services use SOAP to communicate with other services;
they receive a single XML document as input and generate a single

∗This research is done in cooperation with the Advanced Infras-
tructure Program (AIP) group of SAP.

Copyright is held by the author/owner(s).
WWW2003, May 20–24, 2003, Budapest, Hungary.
ACM xxx.

XML document as output. There are two kinds of internal services,
namelydynamicservices andstatic services. Static services are
location-dependent, i.e., they cannot be executed dynamically on
arbitrary ServiceGlobe servers, because they, e.g., require access
to certain local resources like a DBMS or the file system. In con-
trast, dynamic services are location-independent. They are state-
less, i.e., their internal state is discarded after a request was pro-
cessed, and do not require special resources or permissions. There-
fore, they can be executed on arbitrary ServiceGlobe servers.

Internal services are executed onservice hostswhich are stan-
dard Internet servers additionally running the ServiceGlobe run-
time engine. If internal services have the appropriate permissions,
they can also use resources of service hosts, e.g., databases. Ser-
viceGlobe’s internal services are mobile code, therefore their exe-
cutables are loaded on demand fromcode repositoriesonto service
hosts or, more precisely, into the service hosts’ runtime engines. A
UDDI server is used to find an appropriate code repository storing
a certain service.

3. DYNAMIC SERVICE SELECTION
In general, Web services invoke other services by passing the ser-
vice’s URL or access point to the service platform. In contrast,
dynamic service selection[2] enables Web services to state a tech-
nical specification of the services that should be invoked. It is
the service platform’s task to select suitable Web services utiliz-
ing UDDI. In UDDI, every Web service is assigned to a tModel.
As a semantic classification, a tModel provides a classification of
a service’s functionality and a formal description of its interfaces.
So, instead of explicitly calling an actual Web service, it is possible
to “call” a tModel. Thus, one defines the functionality of the ser-
vices to invoke rather than actual implementations. Additionally to
the tModel, different kinds of constraints can be passed over to the
service platform to influence dynamic service selection.

3.1 Constraints
Constraints enable Web services to control theselectionof Web
services based on the their metadata, theinvocationof the selected
Web services, and theprocessing of repliesreceived from the in-
voked Web services. There are five different types of constraints:
Metadata constraintsare basically XPath queries. They are ap-
plied as a filter to the metadata of all services that are returned by
UDDI when the service platform requests services assigned to a
given tModel. Location constraintsenable Web services to select
services by the location of their execution host. Additionally, dy-
namic services can be restricted to be instantiated only on certain
hosts.Mode constraintsdetermine the number of Web services that
should be invoked when calling a tModel. The number can be spec-
ified as an absolute value or as a percentage.Reply constraintsare
applied to the replies of Web services. Every reply that does not sat-
isfy all reply constraints is discarded. There are two kinds of reply
constraints. Property constraints verify special properties of a reply
provided either by the service platform or included into the reply by
the invoked Web service. Selection constraints are XPath queries
which are applied to a service’s reply, including its SOAP parts.
Result constraintsrefer to the set of all received replies. There are



two kinds of result constraints. Timeout constraints allow setting a
maximal waiting time for replies. First-n constraints allow setting
the number of replies after which a tModel call can be ended.

To influence dynamic service selection in a complex way con-
straints can be combined. For this purpose, the operators AND and
OR are provided for combining constraints subjunctively and dis-
junctively, respectively (NOT is currently being implemented).

3.2 Evaluation of Constraints
Due to space limitations, we can only present a short summary of
how constraints are evaluated when processing a tModel call.

Firstly, constraints from different sources are combined conjunc-
tively into one combined constraint. Possible sources are, e.g., the
Web service itself (the constraints have been compiled into its code,
then) or the Web service’s context. Then, this combined constraint
is transformed into its disjunctive normal form and conflicts—which
can arise when combining constraints—are resolved. Next, UDDI
is queried for all information about services assigned to the given
tModel and metadata as well as location constraints are applied
to the metadata. After this, Web services are invoked in parallel
as specified by mode constraints. Whenever a reply is received,
all relevant reply constraints are applied to it. Also, result con-
straints must be checked to determine if the invocation phase must
be ended. If so, all received replies are returned to the calling Web
service and all outstanding requests are aborted. After that, dy-
namic service selection for a given tModel is finished.

4. MODULAR DISPATCHER SERVICE
For large-scale, mission-critical applications, such as an enterprise
resource planning system like SAP, a single service host is not suf-
ficient to provide low response times and high availability. Down-
time can generate high costs. Therefore, it is necessary to run sev-
eral instances of a service on multiple service hosts for fault toler-
ance reasons and a load balancing component to avoid load skew.

We propose a generic solution to this problem: a modulardis-
patcher servicewhich can act as a proxy for arbitrary services. Us-
ing this service, it is possible to enhance (even many already ex-
isting) services with load balancing and high availability features,
as long as concurrency control mechanisms are used, e.g., by using
a database as back-end (as many real-world services do). An ad-
ditional feature of our dispatcher is calledautomatic service repli-
cationand enables the dispatcher to install new instances of static
services on demand.

4.1 Architecture of the Dispatcher
Our dispatcher is a software-based layer-7 switch, performing load
balancing using a dispatching strategy which can access load infor-
mation about all relevant resources. In contrast to existing layer-7
switches it is realized as a regular service. Thus, our dispatcher
is more flexible, extensible, and seamlessly integrated into the ser-
vice platform. There are three types of modules available to cus-
tomize the dispatcher: Thedispatch moduleimplements the ac-
tual dispatching strategy. It can access the load situation of service
hosts and other resources for the assignment of requests to service
instances.Advisor Modulesare used to collect data for the dis-
patcher’s view of the load situation of all relevant resources.Config
Modulesare used to generate the configuration for new service in-
stances. The modules can access the load situation history to find,
e.g., the database host which was least loaded in the last few days.

To turn an existing service into a highly available and load bal-
anced service, a properly configured dispatcher service must be
started. Additionally, some new UDDI data has to be registered and
some existing data has to be modified so that all service instances

and all service hosts can be found by the dispatcher. A cluster of
service hosts can be easily supplemented with new service hosts by
registering them at the UDDI repository.

4.2 Automatic Service Replication
If all available service instances of a service are running on heavily
loaded service hosts and there are service hosts available having a
low workload, the dispatcher can decide to generate a new service
instance using automatic service replication. Imagine service hosts
A and B are heavily loaded and host C currently has no instance of
Service S running. Thus, the dispatcher sends a message to service
host C to create a new instance of Service S. The configuration of
the new Service S is generated using the appropriate configuration
module. If no service hosts having low workload are available,
the dispatcher can buffer incoming messages (until the buffer is
full) or reject them depending on the configuration of the dispatcher
instance and the modules.

4.3 High Availability
Using several instances of a service greatly increases its availability
and decreases the average response time. Assuming that the server
running the dispatcher itself is highly available, the availability of
the entire system depends only on the availability of the service
hosts. Even assuming very unreliable service hosts with MTBF=
48h (mean time between failure) and MTTR= 12h (mean time to
repair) a pool with 8 members will only be unavailable about 1.5
minutes a year. There are many possible adaptable solutions from
the fields of database systems and Web servers including solutions
based on redundant hardware, but this is out of the scope of this
paper.

5. CONCLUSION
The implementation of ServiceGlobe and the two presented tech-
niques, dynamic service selection and the generic dispatcher ser-
vice, is finished. A demo of ServiceGlobe and an e-procurement
scenario was given at VLDB’02 [3]. Currently, the ServiceGlobe
system is installed on a blade server with 160 processors overall
(with 2 and 4 processors per server blade, respectively) operated
by the Advanced Infrastructure Program group of SAP. Right now,
performance evaluations with high-volume business applications
are conducted using this blade server and the presented techniques.
For the future, we plan to work on caching of SOAP messages and
to further investigate context for Web services.

6. REFERENCES
[1] M. Keidl, S. Seltzsam, and A. Kemper. Flexible and Reliable

Web Service Execution. InProc. of the 1st Workshop on
Entwicklung von Anwendungen auf der Basis der XML
Web-Service Technologie, pages 17–30, 2002.

[2] M. Keidl, S. Seltzsam, C. K¨onig, and A. Kemper.
Kontext-basierte Personalisierung von Web Services. In
Proc. GI Conf. on Database Systems for Office, Engineering,
and Scientific Applications, 2003. Accepted for Publication.

[3] M. Keidl, S. Seltzsam, K. Stocker, and A. Kemper.
ServiceGlobe: Distributing E-Services across the Internet
(Demonstration). InProc. of the Conf. on Very Large Data
Bases (VLDB), pages 1047–1050, 2002.

[4] E. Rahm and G. Vossen, editors.Web & Datenbanken:
Konzepte, Architekturen, Anwendungen. dpunkt-Verlag, 2002.

[5] S. Seltzsam, S. B¨orzsönyi, and A. Kemper. Security for
Distributed E-Service Composition. InProc. of the 2nd
Intl. Workshop on Technologies for E-Services, volume 2193
of Lecture Notes in Computer Science, pages 147–162, 2001.


